Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.215
Filtrar
1.
Arch Microbiol ; 206(5): 218, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625565

RESUMO

There is a great scientific curiosity to discover all environments sheltering microalgae, especially those with exceptional characteristics from coldest to hottest ones, the purpose remains to explore the potential of the native microalgae flora and the research for new bioactive compounds. This study aimed to isolate a polysaccharide-producing microalga from an extreme ecosystem and to evaluate its capacity to inhibit the α-D-glucosidase enzyme. Chlorella strain is isolated from hypersaline Lake in the Algerian desert. The exopolysaccharide extraction was performed by the concentration of free-cell supernatant in a rotary evaporator. The infrared analysis showed a characteristic footprint of carbohydrates with particular functional groups, such as sulfate. Gas chromatography-mass spectrometry has revealed a hetero-exopolysaccharide composed of galactose 35.75%, glucose 21.13%, xylose 16.81%, fructose 6.96%, arabinose 5.10%, and glucuronic acid 2.68%. The evaluation of the anti-hyperglycemic activity demonstrated a significant α-D-glucosidase inhibition of 80.94 ± 0.01% at 10 mg mL-1 with IC50 equal to 4.31 ± 0.20 mg mL-1. This study opens a vast prospect to use exopolysaccharides as natural nutraceutical or food additive.


Assuntos
Chlorella , Sulfatos , Ecossistema , Arabinose , Glucosidases
2.
Molecules ; 29(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38611855

RESUMO

Quinoa, known as the "golden grain" for its high nutritional value, has polysaccharides as one of its sources of important nutrients. However, the biological functions of quinoa polysaccharides remain understudied. In this study, two crude polysaccharide extracts of quinoa (Q-40 and Q-60) were obtained through sequential precipitation with 40% and 60% ethanol, with purities of 58.29% (HPLC) and 62.15% (HPLC) and a protein content of 8.27% and 9.60%, respectively. Monosaccharide analysis revealed that Q-40 contained glucose (Glc), galacturonic acid (GalA), and arabinose (Ara) in a molar ratio of 0.967:0.027:0.006. Q-60 was composed of xylose (xyl), arabinose (Ara), galactose, and galacturonic acid (GalA) with a molar ratio of 0.889:0.036:0.034:0.020. The average molecular weight of Q-40 ranged from 47,484 to 626,488 Da, while Q-60 showed a range of 10,025 to 47,990 Da. Rheological experiments showed that Q-40 exhibited higher viscosity, while Q-60 demonstrated more elastic properties. Remarkably, Q-60 showed potent antioxidant abilities, with scavenging rates of 98.49% for DPPH and 57.5% for ABTS. Antibacterial experiments using the microdilution method revealed that Q-40 inhibited the growth of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli), while Q-60 specifically inhibited MRSA. At lower concentrations, both polysaccharides inhibited MDA (MD Anderson Cancer Center) cell proliferation, but at higher concentrations, they promoted proliferation. Similar proliferation-promoting effects were observed in HepG2 cells. The research provides important information in the application of quinoa in the food and functional food industries.


Assuntos
Chenopodium quinoa , Ácidos Hexurônicos , Staphylococcus aureus Resistente à Meticilina , Arabinose , Escherichia coli , Grão Comestível
3.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542148

RESUMO

Bifidobacteria are probiotic microorganisms commonly found in the gastrointestinal tract, some of which are known to utilize linear arabino-oligosaccharides (AOS) as prebiotic carbohydrates. In general, the synergistic actions of exo-type α-l-arabinofuranosidases (ABFs) and endo-α-1,5-l-arabinanases (ABNs) are required for efficient arabinan degradation. In this study, the putative gene cluster for arabinan degradation was discovered in the genome of Bifidobacterium longum subsp. suis. It consists of a variety of genes encoding exo- and endo-hydrolases, sugar-binding proteins, ABC-binding cassettes, and transcriptional regulators. Among them, two endo-ABNs GH43 (BflsABN43A and BflsABN43B), two exo-ABFs GH43 (BflsABF43A and BflsABF43B), and an exo-ABF GH51 (BflsABF51) were predicted to be the key hydrolases for arabinan degradation. These hydrolase genes were functionally expressed in Escherichia coli, and their enzymatic properties were characterized. Their synergism in arabinan degradation has been proposed from the detailed modes of action. Extracellular endo-BflsABN43A hydrolyzes sugar beet and debranched arabinans into the short-chain branched and linear AOS. Intracellularly, AOS can be further degraded into l-arabinose via the cooperative actions of endo-BflsABN43B, exo-BflsABF43A with debranching activity, α-1,5-linkage-specific exo-BflsABF43B, and exo-BflsABF51 with dual activities. The resulting l-arabinose is expected to be metabolized into energy through the pentose phosphate pathway by three enzymes expressed from the ara operon of bifidobacteria. It is anticipated that uncovering arabinan utilization gene clusters and their detailed functions in the genomes of diverse microorganisms will facilitate the development of customized synbiotics.


Assuntos
Arabinose , Bifidobacterium , Polissacarídeos , Polissacarídeos/metabolismo , Família Multigênica , Oligossacarídeos , Glicosídeo Hidrolases/metabolismo , Especificidade por Substrato
4.
Plant Physiol Biochem ; 208: 108495, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452451

RESUMO

Solanum lycopersicum (Tomato) leaves and stems are considered waste. Valorization of this waste can be achieved by for example the extraction of proteins. This prospect is promising but currently not feasible, since protein extraction yields from tomato leaves are low, amongst other due to the (physical) barrier formed by the plant cell walls. However, the molecular aspects of the relationship between cell wall properties and protein extractability from tomato leaves are currently not clear and thus objective of this study. To fill this knowledge gap the biochemical composition of plant cell walls was measured and related to protein extraction yields at different plant ages, leaf positions, and across different tomato accessions, including two Solanum lycopersicum cultivars and the wildtype species S. pimpinellifolium and S. pennellii. For all genotypes, protein extraction yields from tomato leaves were the highest in young tissues, with a decreasing trend towards older plant material. This decrease of protein extraction yield was accompanied by a significant increase of arabinose and galacturonic acid content and a decrease of galactose content in the cell walls of old-vs-young tissues. This resulted in strong negative correlations between protein extraction yield and the content of arabinose and galacturonic acid in the cell wall, and a positive correlation between the content of galactose and protein extraction yield. Overall, these results point to the importance of the pectin network on protein extractability, making pectin a potential breeding target for enhancing protein extractability from tomato leaves.


Assuntos
Ácidos Hexurônicos , Solanum lycopersicum , Solanum lycopersicum/genética , Arabinose , Galactose , Melhoramento Vegetal , Parede Celular/metabolismo , Folhas de Planta/metabolismo , Pectinas/metabolismo
5.
Pharmacol Res ; 202: 107136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460778

RESUMO

CREB-regulated transcription coactivator 1 (CRTC1), a pivotal synaptonuclear messenger, regulates synaptic plasticity and transmission to prevent depression. Despite exhaustive investigations into CRTC1 mRNA reductions in the depressed mice, the regulatory mechanisms governing its transcription remain elusive. Consequently, exploring rapid but non-toxic CRTC1 inducers at the transcriptional level is important for resisting depression. Here, we demonstrate the potential of D-arabinose, a unique monosaccharide prevalent in edible-medicinal plants, to rapidly enter the brain and induce CRTC1 expression, thereby eliciting rapid-acting and persistent antidepressant responses in chronic restrain stress (CRS)-induced depressed mice. Mechanistically, D-arabinose induces the expressions of peroxisome proliferator-activated receptor gamma (PPARγ) and transcription factor EB (TFEB), thereby activating CRTC1 transcription. Notably, we elucidate the pivotal role of the acetyl-CoA synthetase short-chain family member 2 (ACSS2) as an obligatory mediator for PPARγ and TFEB to potentiate CRTC1 transcription. Furthermore, D-arabinose augments ACSS2-dependent CRTC1 transcription by activating AMPK through lysosomal AXIN-LKB1 pathway. Correspondingly, the hippocampal down-regulations of ACSS2, PPARγ or TFEB alone failed to reverse CRTC1 reductions in CRS-exposure mice, ultimately abolishing the anti-depressant efficacy of D-arabinose. In summary, our study unveils a previously unexplored role of D-arabinose in activating the ACSS2-PPARγ/TFEB-CRTC1 axis, presenting it as a promising avenue for the prevention and treatment of depression.


Assuntos
Arabinose , PPAR gama , Camundongos , Animais , PPAR gama/genética , PPAR gama/metabolismo , Arabinose/farmacologia , Arabinose/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Encéfalo/metabolismo
6.
Metab Eng ; 82: 274-285, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38428730

RESUMO

Rosavin is the characteristic component of Rhodiola rosea L., an important medicinal plant used widely in the world that has been reported to possess multiple biological activities. However, the endangered status of wild Rhodiola has limited the supply of rosavin. In this work, we successfully engineered an Escherichia coli strain to efficiently produce rosavin as an alternative production method. Firstly, cinnamate: CoA ligase from Hypericum calycinum, cinnamoyl-CoA reductase from Lolium perenne, and uridine diphosphate (UDP)-glycosyltransferase (UGT) from Bacillus subtilis (Bs-YjiC) were selected to improve the titer of rosin in E. coli. Subsequently, four UGTs from the UGT91R subfamily were identified to catalyze the formation of rosavin from rosin, with SlUGT91R1 from Solanum lycopersicum showing the highest activity level. Secondly, production of rosavin was achieved for the first time in E. coli by incorporating the SlUGT91R1 and UDP-arabinose pathway, including UDP-glucose dehydrogenase, UDP-xylose synthase, and UDP-xylose 4-epimerase, into the rosin-producing stain, and the titer reached 430.5 ± 91.4 mg/L. Thirdly, a two-step pathway derived from L-arabinose, composed of L-arabinokinase and UDP-sugar pyrophosphorylase, was developed in E. coli to further optimize the supply of the precursor UDP-arabinose. Furthermore, 1203.7 ± 32.1 mg/L of rosavin was produced from D-glucose and L-arabinose using shake-flask fermentation. Finally, the production of rosavin reached 7539.1 ± 228.7 mg/L by fed-batch fermentation in a 5-L bioreactor. Thus, the microbe-based production of rosavin shows great potential for commercialization. This work provides an effective strategy for the biosynthesis of other valuable natural products with arabinose-containing units from D-glucose and L-arabinose.


Assuntos
Dissacarídeos , Glucose , Rhodiola , Glucose/genética , Glucose/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Arabinose/metabolismo , Rhodiola/genética , Rhodiola/metabolismo , Xilose/metabolismo
7.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 786-798, 2024 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-38545977

RESUMO

Rhamnolipids (RLs) have emerged as one of the most promising classes of biosurfactants. The ratio of mono-RL to di-RL plays a significant role in determining its performance. Therefore, strains whose production of mono-RL and di-RL are manuplable, have advantage on applications in various scenarios. In this study, we developed a rhlC deletion mutant strain in Pseudomonas aeruginosa PAO1, which produced primarily mono-RL. Subsequently, we generated two complemented strains by integrating the arabinose-induced PBAD-rhlC gene, either directly into the chromosomes or expressing it on plasmids. Our results indicate that the ratio of mono-RL to di-RL synthesized by the complemented strain gradually decreased as the concentration of arabinose (the inducer) increased. Consequently, there was a decrease in emulsification ability and an increase in surface tension and critical micelle concentration (CMC) of the corresponding rhamnolipids. The complemented strains without inducer can produce a small amount of di-rhamnolipids, which enhanced the surfactant properties. Notably, the rhamnolipids induced by 0.10% arabinose exhibited the most potent antibacterial effect.


Assuntos
Arabinose , Glicolipídeos , Glicolipídeos/farmacologia , Antibacterianos/farmacologia , Tensoativos/farmacologia , Pseudomonas aeruginosa/genética
8.
J Sci Food Agric ; 104(7): 4128-4135, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308538

RESUMO

BACKGROUND: Glycation is a green processing technology. Based on our previous studies, glycation with l-arabinose and xylose was beneficial to enhance the texture properties of silver carp mince (SCM) gels. However, the possible enhancement mechanism remained unclear. Therefore, in this study, SCM gels with different types of reducing sugar (glucose, l-arabinose, and xylose) were prepared based on our previous study. The possible mechanism of texture enhancement of SCM gels was analyzed by investigating the changes in water distribution, protein structures, and microstructure in the gel system. RESULTS: The glycation of l-arabinose and xylose enhanced the hardness, cohesiveness, chewiness, and resilience of SCM gels. Hardness increased from 1883.04 (control group) to 3624.54 (l-arabinose group) and 4348.18 (xylose group). Low-field nuclear magnetic resonance (LF-NMR) showed that glycation promoted the tight binding of immobilized water to proteins. Raman spectroscopic analysis showed that glycation increased the surface hydrophobicity and promoted the formation of disulfide bonds. Scanning electron microscopy (SEM) showed that glycation promoted the formation of uniform and dense three-dimensional network structure in SCM gels. CONCLUSION: In summary, glycation enhanced the binding ability of immobilized water to proteins, improved the surface hydrophobicity, promoted the formation of disulfide bonds, and led to a more uniform and dense gel network structure of proteins, thus enhancing the texture properties of SCM gels. This research provided a theoretical basis for a better understanding of the mechanism of the effect of glycation on the quality of gel products and also provided technical support for the application of l-arabinose and xylose in new functional gel foods. © 2024 Society of Chemical Industry.


Assuntos
Carpas , Reação de Maillard , Animais , Xilose/química , Arabinose/química , Carpas/metabolismo , Géis/química , Proteínas , Água , Dissulfetos
9.
Carbohydr Polym ; 331: 121831, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38388048

RESUMO

An undisclosed polysaccharide, BCP80-2, was isolated from Belamcanda chinensis (L.) DC. Structural investigation revealed that BCP80-2 consists of ten monosaccharide residues including t-α-Araf-(1→, →3,5)-α-Araf-(1→, →5)-α-Araf-(1→, →4)-ß-Xylp-(1→, →3)-α-Rhap-(1→, →4)-ß-Manp-(1→, t-ß-Glcp-(1→, →6)-α-Glcp-(1→, t-ß-Galp-(1→, and→3)-α-Galp-(1→. In vivo activity assays showed that BCP80-2 significantly suppressed neoplasmic growth, metastasis, and angiogenesis in zebrafish. Mechanistic studies have shown that BCP80-2 inhibited cell migration of HepG2 cells by suppressing the FAK signaling pathway. Moreover, BCP80-2 also activated immunomodulation and upregulated the secretion of co-stimulatory molecules CD40, CD86, CD80, and MHC-II. In conclusion, BCP80-2 inhibited tumor progression by targeting the FAK signaling pathway and activating CD40-induced adaptive immunity.


Assuntos
Arabinose , Neoplasias Hepáticas , Animais , Sequência de Carboidratos , Peixe-Zebra , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Neoplasias Hepáticas/tratamento farmacológico
10.
Reprod Toxicol ; 124: 108550, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280687

RESUMO

Particulate matter 2.5 (PM2.5) is associated with reproductive health and adverse pregnancy outcomes. However, studies evaluating biological markers of PM2.5 are lacking, and identifying biomarkers for estimating prenatal exposure to prevent pregnancy complications is essential. Therefore, we aimed to explore urine metabolites that are easy to measure as biomarkers of exposure. In this matched case-control study based on the PM2.5 exposure, 30 high PM2.5 group (>15 µg/m3) and 30 low PM2.5 group (<15 µg/m3) were selected from air pollution on pregnancy outcome (APPO) cohort study. We used a time-weighted average model to estimate individual PM exposure, which used indoor PM2.5 and outdoor PM2.5 concentrations by atmospheric measurement network based on residential addresses. Clinical characteristics and urine samples were collected from participants during the second trimester of pregnancy. Urine metabolites were quantitatively measured using gas chromatography-mass spectrometry following multistep chemical derivatization. Statistical analyses were conducted using SPSS version 21 and MetaboAnalyst 5.0. Small for gestational age and gestational diabetes (GDM) were significantly increased in the high PM2.5 group, respectively (P = 0.042, and 0.022). Fifteen metabolites showed significant differences between the two groups (P < 0.05). Subsequent pathway enrichment revealed that four pathways, including pentose and glucuronate interconversion with three pentose sugars (ribose, arabinose, and xylose; P < 0.05). The concentration of ribose increased preterm births (PTB) and GDM (P = 0.044 and 0.049, respectively), and the arabinose concentration showed a tendency to increase in PTB (P = 0.044). Therefore, we identified urinary pentose metabolites as biomarkers of PM2.5 and confirmed the possibility of their relationship with pregnancy complications.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Diabetes Gestacional , Nascimento Prematuro , Recém-Nascido , Feminino , Gravidez , Humanos , Material Particulado/análise , Exposição Materna/efeitos adversos , Poluentes Atmosféricos/análise , Estudos de Coortes , Estudos de Casos e Controles , Arabinose/análise , Ribose/análise , Poluição do Ar/efeitos adversos
11.
Food Chem ; 439: 138077, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039607

RESUMO

Myo-inositol, referred to as vitamin B8, is an essential nutrient for maintaining human physiological functions. However, the morphology of myo-inositol products is predominantly powder or needle shaped, leading to poor food properties. In this work, three edible sugar additives, i.e. d-glucose, l-arabinose and d-fructose, are adopted in the crystallization of myo-inositol to improve its food properties. The results show that these additives change the morphology of myo-inositol crystals. d-glucose and l-arabinose reduced the aspect ratio of myo-inositol crystals, and d-glucose transformed elongated lamellar myo-inositol crystals into diamond-shaped lamellar crystals. The diamond-shaped lamellar myo-inositol products exhibited outstanding functional food properties. It offered a smoother texture and more pleasant mouthfeel when the products were added to infant formulas and nutraceuticals. When they were applied to functional beverages, the dissolution rate was increased by 35 %. This work provides a theoretical guidance for improving food properties through crystallization and possesses considerable potential for industrialization.


Assuntos
Arabinose , Açúcares , Humanos , Cristalização , Inositol , Glucose
12.
Int Immunopharmacol ; 126: 111188, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37995573

RESUMO

There is a growing amount of research that highlights the significant involvement of metabolic imbalance and the inflammatory response in the advancement of colitis. Arabinose is a naturally occurring bioactive monosaccharide that plays a crucial role in the metabolic processes and synthesis of many compounds in living organisms. However, the more detailed molecular mechanism by which the administration of arabinose alleviates the progression of colitis and its associated carcinogenesis is still not fully understood. In the present study, arabinose is recognized as a significant and inherent protector of the intestinal mucosal barrier through its role in preserving the integrity of tight junctions within the intestines. Also, it is important to note that there is a positive correlation between the severity of inflammatory bowel disease (IBD) and colorectal cancer (CRC), as well as chemically-induced colitis in mice, and lower levels of arabinose in the bloodstream. In two mouse models of colitis, caused by dextran sodium sulfate (DSS) or by spontaneous colitis in IL-10-/- mice, damage to the intestinal mucosa was reduced by giving the mice arabinose. When arabinose is administrated to model with colitis, it sets off a chain of events that help keep the lysosomes together and stop cathepsin B from being released. During the progression of intestinal epithelial injury, this process blocks myosin light chain kinase (MLCK) from damaging tight junctions and causing mitochondrial dysfunction. In summary, the results of the study have provided evidence supporting the beneficial effects of arabinose in mitigating the progression of colitis. This is achieved through its ability to avoid dysregulation of the intestinal barrier. Consequently, arabinose may hold promise as a therapeutic supplementation for the management of colitis.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Camundongos , Animais , Arabinose/uso terapêutico , Arabinose/metabolismo , Arabinose/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Junções Íntimas , Mucosa Intestinal , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
13.
Carbohydr Polym ; 326: 121611, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142095

RESUMO

Hemicellulose and pectin are noteworthy components of historical European rag papers, and have not been studied in detail so far. Rag papers were made from used textiles, and fiber-based utilities, such as ropes and bags. These had been prepared until the mid-19th century from plant-based fibers. Their polysaccharide composition could relate to their condition and history. This information can be expected to hold importance for the preservation and conservation of historical objects. We investigated a collection of rag papers of different age for their composition of non-cellulosic polysaccharides, and compared the findings with modern rag papers and wood pulps. Furthermore, a non-destructive determination of the hemicellulose and pectin content by near-infrared spectroscopy was developed. Historical rag papers had a lower hemicellulose/pectin content than pulps; the fractions of rhamnose, galactose, and arabinose were higher, while xylose was lower. In modern rag papers, xylose tended to be at the higher end of the range, which suggests a degradation of hemicelluloses/pectin over time or a change in raw materials and manufacturing. Rag papers also showed higher crystallinity than wood pulp papers. These findings provide insights into rag paper characteristics and offer potential classification methods.


Assuntos
Polissacarídeos , Xilose , Xilose/metabolismo , Polissacarídeos/química , Pectinas/metabolismo , Madeira/química , Arabinose/análise
14.
Arch Microbiol ; 206(1): 41, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38147133

RESUMO

Vibrio parahaemolyticus is a significant cause of seafood-associated gastroenteritis and pestilence in aquaculture worldwide. Despite extensive research, strategies for protein depletion in this pathogen remain limited. Herein, we constructed a new CRISPR interference (CRISPRi) system for gene repression based on the combination of a shuttle vector pVv3 and the nuclease-null Cas9 variant (dead Cas9, or dCas9) from Streptococcus pyrogens. This CRISPRi is induced by adding both IPTG and arabinose. We showed that gene repression is scalable via the use of multiple sgRNAs. We also demonstrated that this gene repression can be precisely tuned by adjusting the amount of two different inducers and can be reversed by removing the inducers. This system provides a simple approach for selective gene repression on a genome-wide scale in V. parahaemolyticus. Application of this system will dramatically accelerate investigations of this bacterium, including studies of physiology, pathogenesis, and drug target discovery.


Assuntos
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , RNA Guia de Sistemas CRISPR-Cas , Aquicultura , Arabinose , Descoberta de Drogas
15.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139303

RESUMO

A microbial fungicide developed from Bacillus subtilis NCD-2 has been registered for suppressing verticillium wilt in crops in China. Spores are the main ingredient of this fungicide and play a crucial role in suppressing plant disease. Therefore, increasing the number of spores of strain NCD-2 during fermentation is important for reducing the cost of the fungicide. In this study, five kinds of carbon sources were found to promote the metabolism of strain NCD-2 revealed via Biolog Phenotype MicroArray (PM) technology. L-arabinose showed the strongest ability to promote the growth and sporulation of strain NCD-2. L-arabinose increased the bacterial concentration and the sporulation efficiency of strain NCD-2 by 2.04 times and 1.99 times compared with D-glucose, respectively. Moreover, L-arabinose significantly decreased the autolysis of strain NCD-2. Genes associated with arabinose metabolism, sporulation, spore resistance to heat, and spore coat formation were significantly up-regulated, and genes associated with sporulation-delaying protein were significantly down-regulated under L-arabinose treatment. The deletion of msmX, which is involved in arabinose transport in the Bacillus genus, decreased growth and sporulation by 53.71% and 86.46% compared with wild-type strain NCD-2, respectively. Complementing the mutant strain by importing an intact msmX gene restored the strain's growth and sporulation.


Assuntos
Fungicidas Industriais , Doenças não Transmissíveis , Humanos , Arabinose , Bacillus subtilis/metabolismo , Fungicidas Industriais/metabolismo , Fermentação
16.
J Biol Chem ; 299(12): 105466, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979912

RESUMO

RecN, a bacterial structural maintenance of chromosomes-like protein, plays an important role in maintaining genomic integrity by facilitating the repair of DNA double-strand breaks (DSBs). However, how RecN-dependent chromosome dynamics are integrated with DSB repair remains unclear. Here, we investigated the dynamics of RecN in response to DNA damage by inducing RecN from the PBAD promoter at different time points. We found that mitomycin C (MMC)-treated ΔrecN cells exhibited nucleoid fragmentation and reduced cell survival; however, when RecN was induced with arabinose in MMC-exposed ΔrecN cells, it increased a level of cell viability to similar extent as WT cells. Furthermore, in MMC-treated ΔrecN cells, arabinose-induced RecN colocalized with RecA in nucleoid gaps between fragmented nucleoids and restored normal nucleoid structures. These results suggest that the aberrant nucleoid structures observed in MMC-treated ΔrecN cells do not represent catastrophic chromosome disruption but rather an interruption of the RecA-mediated process. Thus, RecN can resume DSB repair by stimulating RecA-mediated homologous recombination, even when chromosome integrity is compromised. Our data demonstrate that RecA-mediated presynapsis and synapsis are spatiotemporally separable, wherein RecN is involved in facilitating both processes presumably by orchestrating the dynamics of both RecA and chromosomes, highlighting the essential role of RecN in the repair of DSBs.


Assuntos
Proteínas de Bactérias , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Enzimas de Restrição do DNA , Recombinases Rec A , Arabinose/metabolismo , Proteínas de Bactérias/metabolismo , Dano ao DNA , Enzimas de Restrição do DNA/metabolismo , DNA Bacteriano/metabolismo , Recombinação Homóloga , Viabilidade Microbiana/efeitos dos fármacos , Mitomicina/farmacologia , Recombinases Rec A/metabolismo
17.
J Food Sci ; 88(12): 4962-4973, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37960937

RESUMO

This study aimed to investigate the physicochemical attributes of soluble dietary fibers (SDFs) of grape, which were isolated after enzymatic (using cellulase [0.1 MPa/60°C/30 min]), high-pressure (HP) (100 MPa/60°C/30 min), or HP-assisted enzymatic treatment (using cellulase [100 MPa/60°C/30 min]), then to evaluate textural properties, color, and microbiological load of jelly prepared using grape waste extract and either pectin or SDF types. HP-assisted enzymatic treatment increased glucose adsorption capacity by more than 50%, and the water-holding capacity of SDF more than twofold as compared to the levels measured in untreated-SDF. After treatments, glucose and galactose contents decreased, whereas fructose, mannose, xylose, arabinose, and rhamnose ratios increased. The arabinose ratio increased more than twice by the effect of HP, whereas the xylose content increased almost fivefold with HP-assisted enzymatic treatment. For the textural properties of jelly, HP-assisted enzymatic treated-SDF provided almost double values in gel strength and adhesiveness than those contributed by untreated-SDF. It was followed by HP-treated SDF jelly. The results showed that HP-assisted enzymatic treatment developed more similar outcomes with enzymatic treatment, rather than HP treatment alone. HP-assisted enzymatic hydrolysis is recommended for treating SDF for use in jelly due to its synergistic effect. PRACTICAL APPLICATION: High-pressure-assisted cellulase treatment provided the best properties to SDF for jelly. In combined treatment, impacts of cellulase treatment were more prominent than HP effects. Therefore, the use of HP assistance for enzymatic hydrolysis shortens the processing time. Moreover, the technological and functional properties (water holding, glucose adsorption capacity, and monosaccharide composition) of the combined treated-fiber can improve. In addition, the color and textural properties of the jelly prepared with this treated-fiber can be enhanced. In this way, it may be possible to obtain a good thickening agent. This material can also be an alternative to pectin.


Assuntos
Celulases , Vitis , Xilose , Arabinose , Fibras na Dieta , Glucose , Pectinas , Água
18.
J Food Sci ; 88(12): 5108-5121, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37889108

RESUMO

In this study, the influence of compound sugar (glucose, sucrose, trehalose, and arabinose) and compound sugar and salt (glucose, sucrose, trehalose, arabinose, and NaCl) on the thermal stability of heat-treated liquid egg yolk was explored. The results showed that the addition of 4% compound sugar or 4% compound sugar salt could significantly enhance the heat resistance of liquid egg yolk and increase the denaturation temperature of liquid egg yolk to above 77°C. Moreover, the addition of sugar and salt could improve the functional properties of liquid egg yolk to varying degrees, allowing it to maintain excellent emulsification and soluble protein content after heat treatment. Further analysis using Fourier transform infrared spectroscopy showed that the increase in α-helix content in liquid egg yolk treated with sugar salt also contributes to improving the thermal stability of egg yolk. The method of inhibiting egg yolk aggregation caused by heat treatment provided in this study provides a selective method and theoretical basis for the commercial production of heat-resistant liquid egg yolk.


Assuntos
Gema de Ovo , Cloreto de Sódio , Gema de Ovo/química , Cloreto de Sódio/análise , Açúcares/análise , Arabinose/análise , Trealose , Cloreto de Sódio na Dieta/análise , Sacarose/análise , Glucose/análise
19.
PLoS One ; 18(10): e0293276, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37883451

RESUMO

Vibrio cholerae, the causative agent of cholera epidemics, is a rod-shaped bacterium with a highly polarized cellular organization. It can survive harmful growth conditions by entering a non-proliferating spheroplast state, which involves loss of the cell envelope and polarity. How polarized rod organization cells are formed when the spheroplasts exit the non-proliferating state remains largely uncharacterized. To address this question, we investigated how L-arabinose-induced V. cholerae spheroplasts return to growth. We found that de novo morphogenesis started with the elimination of an excess of periplasm, which was immediately followed by cell elongation and the formation of cell branches with a diameter similar to that of normal V. cholerae cells. Periplasm elimination was driven by bifunctional peptidoglycan synthases involved in cell-wall maintenance, the aPBPs. Elongation and branching relied on the MreB-associated monofunctional peptidoglycan synthase PBP2. The cell division monofunctional peptidoglycan synthase FtsI was not involved in any of these processes. However, the FtsK cell division protein specifically targeted the sites of vesicle extrusion. Genetic material was amplified by synchronous waves of DNA replication as periplasmic elimination began. The HubP polarity factor targeted the tip of the branches as they began to form. However, HubP-mediated polarization was not involved in the efficiency of the recovery process. Finally, our results suggest that the positioning of HubP and the activities of the replication terminus organizer of the two V. cholerae chromosomes, MatP, are independent of cell division. Taken together, these results confirm the interest of L-arabinose-induced V. cholerae spheroplasts to study how cell shape is generated and shed light on the de novo establishment of the intracellular organization and cell polarization in V. cholerae.


Assuntos
Cólera , Vibrio cholerae , Humanos , Vibrio cholerae/genética , Esferoplastos/metabolismo , Peptidoglicano/metabolismo , Arabinose/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
20.
Biochemistry ; 62(20): 2970-2981, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37782650

RESUMO

Covalent modification of lipid A with 4-deoxy-4-amino-l-arabinose (Ara4N) mediates resistance to cationic antimicrobial peptides and polymyxin antibiotics in Gram-negative bacteria. The proteins required for Ara4N biosynthesis are encoded in the pmrE and arnBCADTEF loci, with ArnT ultimately transferring the amino sugar from undecaprenyl-phospho-4-deoxy-4-amino-l-arabinose (C55P-Ara4N) to lipid A. However, Ara4N is N-formylated prior to its transfer to undecaprenyl-phosphate by ArnC, requiring a deformylase activity downstream in the pathway to generate the final C55P-Ara4N donor. Here, we show that deletion of the arnD gene in an Escherichia coli mutant that constitutively expresses the arnBCADTEF operon leads to accumulation of the formylated ArnC product undecaprenyl-phospho-4-deoxy-4-formamido-l-arabinose (C55P-Ara4FN), suggesting that ArnD is the downstream deformylase. Purification of Salmonella typhimurium ArnD (stArnD) shows that it is membrane-associated. We present the crystal structure of stArnD revealing a NodB homology domain structure characteristic of the metal-dependent carbohydrate esterase family 4 (CE4). However, ArnD displays several distinct features: a 44 amino acid insertion, a C-terminal extension in the NodB fold, and sequence divergence in the five motifs that define the CE4 family, suggesting that ArnD represents a new family of carbohydrate esterases. The insertion is responsible for membrane association as its deletion results in a soluble ArnD variant. The active site retains a metal coordination H-H-D triad, and in the presence of Co2+ or Mn2+, purified stArnD efficiently deformylates C55P-Ara4FN confirming its role in Ara4N biosynthesis. Mutations D9N and H233Y completely inactivate stArnD implicating these two residues in a metal-assisted acid-base catalytic mechanism.


Assuntos
Lipídeo A , Polimixinas , Polimixinas/farmacologia , Polimixinas/metabolismo , Lipídeo A/metabolismo , Arabinose/metabolismo , Amino Açúcares/química , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Carboidratos , Proteínas de Bactérias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...